

Multi-omics molecular treatment targets for Prostate Cancer

What is Prostate Cancer

The **prostate gland** is a male reproductive organ. It secretes prostate fulid, one of the main components of semen. Prostate cancer is a malignant growth in the prostate gland.

Prostate Cancer is the second most commonly diagnosed cancer among men.

Risk factors

Different factors might influence a man's risk of developing prostate cancer:

- **Age**: Increased risk in men over 50.
- Family history: Increased risk for patients having a family member with prostate cancer.
- Race/ Ethnicity: Black men are at higher risk of developing prostate cancer in comparison to white men.

Forms of Prostate Cancer

Patients suffering from Prostate Cancer may experience indolent or aggressive disease.

- Indolent disease slow growing form of Prostate Cancer, unlikely to progress in the absence of treatment.
- **Aggressive disease** life-threatening disease in the absence of treatment.

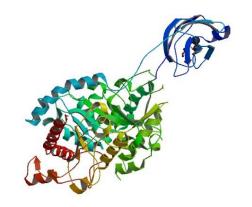
Clinical problem

Accurate discrimination between indolent and aggressive Prostate Cancer is still challenging.

This results in over-treatment of patients with indolent disease and under-treatment of those with lethal disease.

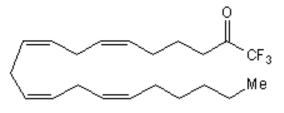
New drugs for advanced Prostate Cancer were recently approved. Low response rate and development of resistance remains a barrier to improve on therapeutic outcomes.

Why studying Prostate Cancer is important


New drugs for Prostate Cancer are urgently needed, linked to the evidence that even though Prostate Cancer is frequently treatable (paradoxically also over-treated) when detected early, once the disease has begun to advance, response to treatment is generally limited and the disease continues to worsen regardless from the means of intervention.

PCaProTreat

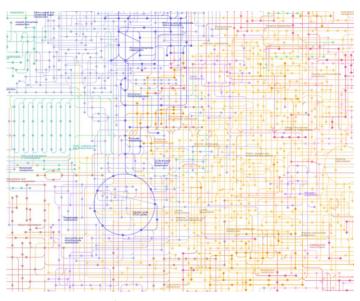
Drug target


- Usually a protein present in disease-affected tissue
- Associated with disease
- Targeted by a drug to give a curative effect

Selection of the "good" drug target is very important for effective treatment.

Drug candidate

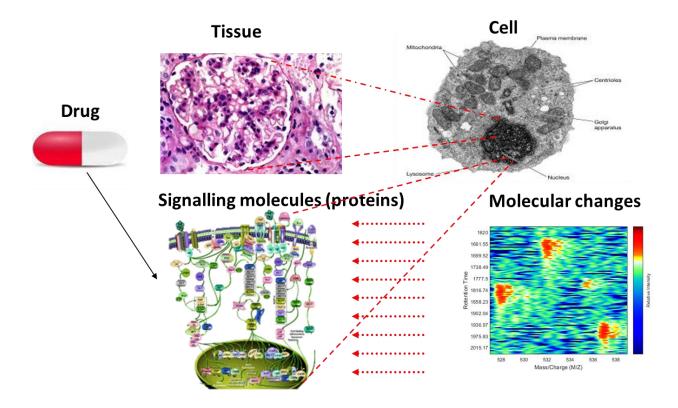
- A compound with therapeutic potential
- It can be antibody, small molecule etc.
- Sufficient selectivity for the target
- Have activity to produce desired effect
- Enough evidence supporting further pre-clinial and clinial development


Challenge

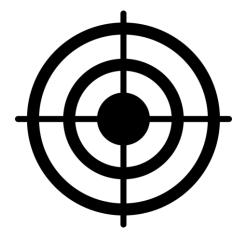
Molecular changes underlying Prostate Cancer development are complex and differ among patients (heterogeneity), which has an impact on the treatment response.

Therefore, selection of a "good" drug target is very challenging.

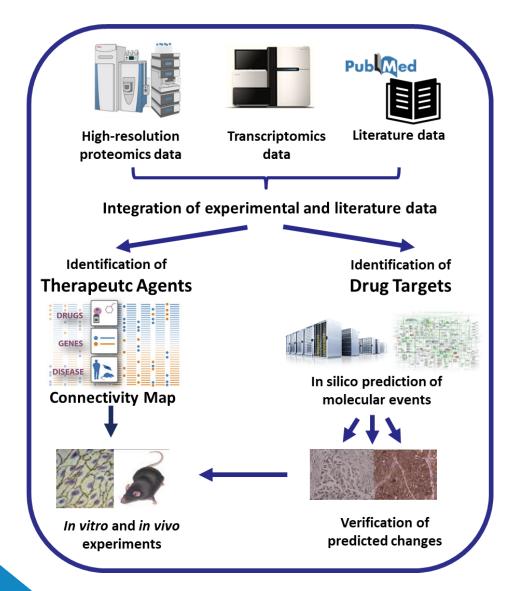
Stumbling blocks for selecting the "good" drug target:


- Insufficient knowledge of the molecular pathophysiology.
- Lack of proper assessment of biological relevance.
- Underestimation of complexity and heterogeneity.

Adapted from: https://www.genome.jp/kegg/


Make it perfect

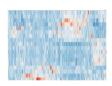
We aim to improve our understanding of molecular changes associated with Prostate Cancer progression to define novel drug targets/ drug candidates based on the molecular pathophysiology.



PCaProTreat Objectives

- 1. Establishment of knowledgebase with molecular features related to Prostate Cancer.
- 2. Characterisation of the molecular changes underlying Prostate Cancer progression through the integration of multisource (tissue, urine, and seminal plasma) and multi-omics data, complemented with literature-mined data.
- 3. Definition of biological processes/ pathways and their regulatory elements, followed by their validation.
- 4. In silico prediction of potential drug candidates.

Our Patients' centered approach

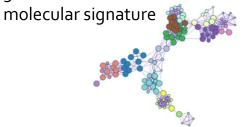


- 1. Identify novel drug targets through linking the molecular changes to the disease etiology.
- 2. Predict new drug candidates able to reverse disease phenotype on the basis of the existence of relationship between disease, proteins, and drugs.

Our contribution

Molecular signature of Prostate Cancer progression

A tissue proteome-based molecular signature comprised of multi-omics and cross-correlated molecular features


Prostate Cancer knowledgebase

A knowledgebase of disease-relevant molecular alterations

Understanding molecular mechanisms of Prostate Cancer Progression

The biological processes and pathways involved in disease progression as revealed based on the

Potential Drug targets / Drug candidates

Novel drug targets / drug candidates defined on the basis of molecular pathophysiology

Where you can meet us?

Detailed information on the PCaProTreat Project is provided in our website

https://pcaprotreat.eu/

Join us on Facebook

https://www.facebook.com/PCaProTreat/

Who we are

PCaProTreat: Multi-omics molecular treatment targets for Prostate Cancer

Marie Skłodowska-Curie Actions Individual Fellowship H2020-MSCA-IF-2017-800048

Contact Us

PCaProTreat

Mosaiques Diagnostics GmbH

Dr Agnieszka Latosinska Rotenburger Str. 20, 30-659 Hannover, Germany

Email: latosinska@mosaiques-diagnostics.com

Phone: +49 511 55 47 44 30

Fax: +49 511 55 47 44 31